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1 Solving ODEs Via Rough Integration

1.1 Solving for the Itô-Lyons map

We now turn to the ODE of the form

ẏ = σ(y)ẋ, y(0) = y0,

where x ∈ Cα and σ is sufficiently smooth. Here, x : [0, T ] → R`, σ : Rd → Rd×`, and
y : [0, T ]→ Rd. We find a unique solution to this ODE, provided that we choose a suitable
X so that x = (x,X) ∈ Rα. The solution we come up with, y(·) = I (y0,x) is continuous
(even locally Lipschitz) in y0 and x. I is known as the Itô-Lyons map. Let’s make some
preparations for this construction. Needless to say that we want to interpret this ODE as

y(t) = y0 +

∫ t

0
σ(y(θ)) dx(θ).

Though if α < 1/2 (say α ∈ (1/3, 1/2]), we need to lift both σ(y) and x to (σ(y), σ̂), (x,X)
with (σ(y), σ̂) ∈ G α(x), (x,X) ∈ Rα.

Recall that G α(x) consists of pairs (z, ẑ) (where we intuitively think of ẑ as a “deriva-
tive” of z with respect to x) such that z, ẑ ∈ Cα and

J(z, ẑ)K2α := sup
s6=t

|z(t)− z(s)− ẑ(s)(x(t)− x(s))|
|t− s|2α

<∞.

Indeed, from the integral formulation of this ODE, we expect that if y solves the equation,
then (y, σ(y)) ∈ G α(x).

Theorem 1.1. Let x = (x,X) ∈ Rα for α ∈ (1/3, 1/2], and assume σ ∈ C3b (bounded
derivatives). Then for each y0, there exists a path y ∈ Cα such that y(0) = y0, (y, σ(y)) ∈
G α(x), and

y(t) = y0 +

∫ t

0
(σ(y), σ̂(y))︸ ︷︷ ︸

σ

· d (x,X)︸ ︷︷ ︸
x

.
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Here, σ̂(y) = [σ̂ijk(y)] with

σ̂ijk(y) =

d∑
r=1

σi,jyr (y)σrk(y).

Moreover, I (y0,x) is Lipschitz with Lipschitz norm calculated in terms of ‖σ‖C3 and
‖x‖α,2α.

The idea is to start from y = (y, ŷ) and set

Fx(ŷ)(t) =

(
y0 +

∫ ·
0

(σ(y), σ̃(y, ŷ)) · d(x,X), σ(y)

)
,

where σ̃(y, ŷ) = [σ̃ijk(y, ŷ)], where

σ̃ijk(y, ŷ) =

d∑
r=1

σijyr(y)ŷrk.

If ŷ is a fixed point of F , then we are done because then the Gubinelli derivative of such
y must be σ(y).

1.2 Breakdown of the map F

Let’s understand F better: Throughout, x = (x,X) ∈ Rα is fixed.

Step 1: Recall that for z = (x, ẑ) ∈ G α(x), we can define w(t) =
∫ t
0 z dx, which satisfies

|w(t)− w(s)− z(s)(x(t)− x(s))− ẑ(s)X(s, t)| ≤ c0([z]α[x]α + [ẑ]α[X]2α)|t− s|3α.

This suggests Fx : G α(x)→ G α(x) by F0
x(z, ẑ) = (w, z). In fact, F0 is linear and

JF0
x(y)Kα,2α ≤ c0[x]α,2α[y]α,2α.

Here is the short proof of this:

Proof.

|w(t)− w(s)− z(s)(x(t)− x(s))| ≤ ‖ẑ‖L∞ [X]2α|t− s|2α

+ c0(what we had before)|t− s|3α.

Step 2: Define F1
x : Gα(x)→ Gα(x) with F1

x(z, ẑ) = (σ(z), Dσ(z)ẑ), where

(Dσ(z)ẑ)ijk =
d∑
r=1

σijzr ẑ
rk

and F1 is bounded if σ ∈ C2. Here is the proof:
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Proof. Using a Taylor expansion for σ,

|σ(z(t))− σ(z(s))−Dσ(z(s))ẑ(s)x(s, t)|
≤ |Dσ(z(s))(z(t)− z(s))−Dσ(z(s))ẑ(s)x(s, t)|+ ‖D2σ‖L∞ [z]α|t− s|2α

≤ ‖Dσ‖L∞ [z]α,2α|t− s|2α + ‖D2σ‖L∞ [z]α|t− s|2α

≤ ‖σ‖C2 [z]α,2α|t− s|2α.

So we get that
JF1

x(z)Kα,2α ≤ ‖σ‖C2JzKα,2α.

Step 3: Next, we define F : G α(x)→ G α(x), as F = F0 ◦ F1, so we send

(y, ŷ) 7→ (σ(y), Dσ(y)ŷ) 7→
(∫ ·

0
(σσ̂) · d(x,X), σ(y)

)
.

Then set

F ′(y, ŷ) =

(
y0 +

∫ ·
0

(σ, σ̂) · d(x,X), σ(y)

)
.

We need to turn F ′ into a contraction so that it has a fixed point. We achieve this
by choosing a sufficiently small interval [0, t0), and finding a nice invariant subset of
G α(x). As we will see, t0 depends on ‖σ‖C3 , so we can repeat the same construction
on [t0, 2t0), . . . .

How can this be done? First, switch from G α(x) to Ĝ α(x) = {(y, ŷ) : y(0) =
y0, ŷ(0) = σ(y0)}. This way, we don’t need to worry about the difference be-
tween a norm and a seminorm; this contraction takes place in a metric space,
which is good enough for our purposes. Observe that (a, â) ∈ Ĝ α(x), where a(t) =
y0 + σ(y0)(x(t)− x(0)) and â(t) = σ(y0). Observe that

a(t)− a(s)︸ ︷︷ ︸
σ(y0)(x(t)−x(s))

− â(s)︸︷︷︸
σ(y0)

(x(t)− x(s)) = 0.

Now set B = {(y, ŷ) ∈ Ĝ α(x) : J(y − a, ŷ − â)Kα,2α ≤ 1}. The trick is to construct
something in a rougher space and then show that it is as regular as you want. We
will continue this next time.
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