Math 279 Lecture 8 Notes

Daniel Raban

September 21, 2021

1 Solving ODEs Via Rough Integration

1.1 Solving for the Itô-Lyons map

We now turn to the ODE of the form

$$\dot{y} = \sigma(y)\dot{x}, \qquad y(0) = y^0,$$

where $x \in \mathcal{C}^{\alpha}$ and σ is sufficiently smooth. Here, $x : [0,T] \to \mathbb{R}^{\ell}$, $\sigma : \mathbb{R}^{d} \to \mathbb{R}^{d \times \ell}$, and $y : [0,T] \to \mathbb{R}^{d}$. We find a unique solution to this ODE, provided that we choose a suitable \mathbb{X} so that $\mathbf{x} = (x, \mathbb{X}) \in \mathscr{R}^{\alpha}$. The solution we come up with, $y(\cdot) = \mathscr{I}(y^{0}, \mathbf{x})$ is continuous (even locally Lipschitz) in y^{0} and \mathbf{x} . \mathscr{I} is known as the **Itô-Lyons map**. Let's make some preparations for this construction. Needless to say that we want to interpret this ODE as

$$y(t) = y^0 + \int_0^t \sigma(y(\theta)) \, dx(\theta).$$

Though if $\alpha < 1/2$ (say $\alpha \in (1/3, 1/2]$), we need to lift both $\sigma(y)$ and x to $(\sigma(y), \hat{\sigma}), (x, \mathbb{X})$ with $(\sigma(y), \hat{\sigma}) \in \mathscr{G}^{\alpha}(x), (x, \mathbb{X}) \in \mathscr{R}^{\alpha}$.

Recall that $\mathscr{G}^{\alpha}(x)$ consists of pairs (z, \hat{z}) (where we intuitively think of \hat{z} as a "derivative" of z with respect to x) such that $z, \hat{z} \in \mathcal{C}^{\alpha}$ and

$$[\![(z,\widehat{z})]\!]_{2\alpha} := \sup_{s \neq t} \frac{|z(t) - z(s) - \widehat{z}(s)(x(t) - x(s))|}{|t - s|^{2\alpha}} < \infty.$$

Indeed, from the integral formulation of this ODE, we expect that if y solves the equation, then $(y, \sigma(y)) \in \mathscr{G}^{\alpha}(x)$.

Theorem 1.1. Let $\mathbf{x} = (x, \mathbb{X}) \in \mathscr{R}^{\alpha}$ for $\alpha \in (1/3, 1/2]$, and assume $\sigma \in \mathcal{C}_b^3$ (bounded derivatives). Then for each y^0 , there exists a path $y \in \mathcal{C}^{\alpha}$ such that $y(0) = y^0$, $(y, \sigma(y)) \in \mathscr{G}^{\alpha}(x)$, and

$$y(t) = y^{0} + \int_{0}^{t} \underbrace{(\sigma(y), \widehat{\sigma}(y))}_{\sigma} \cdot d\underbrace{(x, \mathbb{X})}_{\mathbf{x}}.$$

Here, $\hat{\sigma}(y) = [\hat{\sigma}^{ijk}(y)]$ with

$$\widehat{\sigma}^{ijk}(y) = \sum_{r=1}^{d} \sigma_{y_r}^{i,j}(y) \sigma^{rk}(y).$$

Moreover, $\mathscr{I}(y^0, \mathbf{x})$ is Lipschitz with Lipschitz norm calculated in terms of $\|\sigma\|_{C^3}$ and $\|\mathbf{x}\|_{\alpha,2\alpha}$.

The idea is to start from $\mathbf{y} = (y, \hat{y})$ and set

$$\mathcal{F}_{\mathbf{x}}(\widehat{y})(t) = \left(y^0 + \int_0^{\cdot} (\sigma(y), \widetilde{\sigma}(y, \widehat{y})) \cdot d(x, \mathbb{X}), \sigma(y)\right),$$

where $\widetilde{\sigma}(y, \widehat{y}) = [\widetilde{\sigma}^{ijk}(y, \widehat{y})]$, where

$$\widetilde{\sigma}^{ijk}(y,\widehat{y}) = \sum_{r=1}^d \sigma^{ij}_{y_r}(y)\widehat{y}^{rk}.$$

If \hat{y} is a fixed point of \mathcal{F} , then we are done because then the Gubinelli derivative of such **y** must be $\sigma(y)$.

1.2 Breakdown of the map \mathcal{F}

Let's understand \mathcal{F} better: Throughout, $\mathbf{x} = (x, \mathbb{X}) \in \mathscr{R}^{\alpha}$ is fixed.

Step 1: Recall that for $\mathbf{z} = (x, \hat{z}) \in \mathscr{G}^{\alpha}(x)$, we can define $w(t) = \int_0^t \mathbf{z} \, dx$, which satisfies

$$|w(t) - w(s) - z(s)(x(t) - x(s)) - \hat{z}(s)\mathbb{X}(s,t)| \le c_0([z]_{\alpha}[x]_{\alpha} + [\hat{z}]_{\alpha}[\mathbb{X}]_{2\alpha})|t - s|^{3\alpha}.$$

This suggests $\mathcal{F}_{\mathbf{x}}: \mathscr{G}^{\alpha}(x) \to \mathscr{G}^{\alpha}(x)$ by $\mathcal{F}^{0}_{\mathbf{x}}(z, \hat{z}) = (w, z)$. In fact, \mathcal{F}^{0} is linear and

$$\llbracket \mathcal{F}^{0}_{\mathbf{x}}(\mathbf{y}) \rrbracket_{\alpha,2\alpha} \leq c_0[\mathbf{x}]_{\alpha,2\alpha}[\mathbf{y}]_{\alpha,2\alpha}.$$

Here is the short proof of this:

Proof.

$$|w(t) - w(s) - z(s)(x(t) - x(s))| \le \|\widehat{z}\|_{L^{\infty}} [\mathbb{X}]_{2\alpha} |t - s|^{2\alpha} + c_0 (\text{what we had before}) |t - s|^{3\alpha}. \quad \Box$$

Step 2: Define $\mathcal{F}^1_{\mathbf{x}}: \mathcal{G}^{\alpha}(x) \to \mathcal{G}^{\alpha}(x)$ with $\mathcal{F}^1_{\mathbf{x}}(z, \widehat{z}) = (\sigma(z), D\sigma(z)\widehat{z})$, where

$$(D\sigma(z)\widehat{z})^{ijk} = \sum_{r=1}^{d} \sigma_{z_r}^{ij}\widehat{z}^{rk}$$

and \mathcal{F}^1 is bounded if $\sigma \in \mathcal{C}^2$. Here is the proof:

Proof. Using a Taylor expansion for σ ,

$$\begin{aligned} |\sigma(z(t)) - \sigma(z(s)) - D\sigma(z(s))\widehat{z}(s)x(s,t)| \\ &\leq |D\sigma(z(s))(z(t) - z(s)) - D\sigma(z(s))\widehat{z}(s)x(s,t)| + \|D^{2}\sigma\|_{L^{\infty}}[z]_{\alpha}|t-s|^{2\alpha} \\ &\leq \|D\sigma\|_{L^{\infty}}[\mathbf{z}]_{\alpha,2\alpha}|t-s|^{2\alpha} + \|D^{2}\sigma\|_{L^{\infty}}[z]_{\alpha}|t-s|^{2\alpha} \\ &\leq \|\sigma\|_{\mathcal{C}^{2}}[\mathbf{z}]_{\alpha,2\alpha}|t-s|^{2\alpha}. \end{aligned}$$

So we get that

$$\llbracket \mathcal{F}_{\mathbf{x}}^{1}(\mathbf{z}) \rrbracket_{\alpha,2\alpha} \leq \Vert \sigma \Vert_{\mathcal{C}^{2}} \llbracket \mathbf{z} \rrbracket_{\alpha,2\alpha}.$$

Step 3: Next, we define $\mathcal{F}: \mathscr{G}^{\alpha}(x) \to \mathscr{G}^{\alpha}(x)$, as $\mathcal{F} = \mathcal{F}^{0} \circ \mathcal{F}^{1}$, so we send

$$(y,\widehat{y})\mapsto (\sigma(y), D\sigma(y)\widehat{y})\mapsto \left(\int_0^{\cdot} (\sigma\widehat{\sigma})\cdot d(x, \mathbb{X}), \sigma(y)\right).$$

Then set

$$\mathcal{F}'(y,\widehat{y}) = \left(y^0 + \int_0^{\cdot} (\sigma,\widehat{\sigma}) \cdot d(x,\mathbb{X}), \sigma(y)\right)$$

We need to turn \mathcal{F}' into a contraction so that it has a fixed point. We achieve this by choosing a sufficiently small interval $[0, t_0)$, and finding a nice invariant subset of $\mathscr{G}^{\alpha}(x)$. As we will see, t_0 depends on $\|\sigma\|_{\mathcal{C}^3}$, so we can repeat the same construction on $[t_0, 2t_0), \ldots$

How can this be done? First, switch from $\mathscr{G}^{\alpha}(x)$ to $\widehat{\mathscr{G}}^{\alpha}(x) = \{(y, \widehat{y}) : y(0) = y^0, \widehat{y}(0) = \sigma(y^0)\}$. This way, we don't need to worry about the difference between a norm and a seminorm; this contraction takes place in a metric space, which is good enough for our purposes. Observe that $(a, \widehat{a}) \in \widehat{\mathscr{G}}^{\alpha}(x)$, where $a(t) = y^0 + \sigma(y^0)(x(t) - x(0))$ and $\widehat{a}(t) = \sigma(y^0)$. Observe that

$$\underbrace{a(t) - a(s)}_{\sigma(y^0)(x(t) - x(s))} - \underbrace{\widehat{a}(s)}_{\sigma(y^0)}(x(t) - x(s)) = 0.$$

Now set $\mathscr{B} = \{(y, \hat{y}) \in \widehat{\mathscr{G}}^{\alpha}(x) : [[(y - a, \hat{y} - \hat{a})]]_{\alpha, 2\alpha} \leq 1\}$. The trick is to construct something in a rougher space and then show that it is as regular as you want. We will continue this next time.