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1 Solving ODEs Via Rough Integration

1.1 Solving for the It6-Lyons map
‘We now turn to the ODE of the form

y=o(yi,  y0)=y",

where z € C® and ¢ is sufficiently smooth. Here, z : [0,7] — Rf, ¢ : R — R¥* and
y : [0,7] — R?. We find a unique solution to this ODE, provided that we choose a suitable
X so that x = (z,X) € Z%. The solution we come up with, y(-) = .#(y", x) is continuous
(even locally Lipschitz) in ¢" and x. .# is known as the It6-Lyons map. Let’s make some
preparations for this construction. Needless to say that we want to interpret this ODE as

y(t) = o + / o(4(6)) da(6).

Though if o < 1/2 (say a € (1/3,1/2]), we need to lift both o(y) and z to (0(y),o), (x,X)
with (o(y),0) € 9%(x), (z,X) € Z“.
Recall that % (x) consists of pairs (z,z) (where we intuitively think of Z as a “deriva-
tive” of z with respect to x) such that z,z € C* and
|2(t) — 2(s) — 2(s) (x(t) — x(s))|

[(z,2)]2q := s;;}; i a2 < 00.

Indeed, from the integral formulation of this ODE, we expect that if y solves the equation,
then (y,o(y)) € 9% ().

Theorem 1.1. Let x = (2,X) € Z* for a € (1/3,1/2], and assume o € C} (bounded
derivatives). Then for each y°, there exists a path y € C* such that y(0) = y°, (y,0(y)) €
G*(x), and
t
ot) =i+ [ (o). 5w) (o).
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Here, 5(y) = [699%(y)] with
d
7 y) =D ol (9™ (y).
r=1
Moreover, ¥ (y°,x) is Lipschitz with Lipschitz norm calculated in terms of |o|lcs and

[1%[ler, 20

The idea is to start from y = (y,y) and set

F@)t) = <y° + [ (o).36.9) -d(x,x>,a<y>) ,

0

where 5(y,7) = [67%(y, J)], where
My, g) =) ol i™
r=1
If ¥ is a fixed point of F, then we are done because then the Gubinelli derivative of such
y must be o(y).
1.2 Breakdown of the map F
Let’s understand F better: Throughout, x = (x,X) € £ is fixed.
Step 1: Recall that for z = (x,2) € ¥“(x), we can define w(t) = fg z dx, which satisfies
w(t) — w(s) = 2(s)(x(t) = a(s)) = 2(s)X(s,1)| < col[#alt]a + [Zla[X]2a)lt — s**.
This suggests Fy : 9%(x) — 9%(x) by F2(2,%) = (w, 2). In fact, FV is linear and
[[]:)(()(Y)]]a,Qa S Co [X]Q,Q(X [y]a,Qa-

Here is the short proof of this:

Proof.

w(t) —w(s) = 2(s)(x(t) = a(s))] < ||2l| 2 [X]2alt — s|**
+ ¢o(what we had before)|t — s[3*. O

Step 2: Define F. : G%(x) — G%(x) with FL(z,2) = (0(2), Do(2)Z), where
.. d
(Do(2)2)" = :

=1

s

i 5
0,z

and F' is bounded if o € C2. Here is the proof:



Step 3:

Proof. Using a Taylor expansion for o,

0 (=(1)) — o (2(s)) — Do(=(s))2(s)a(s, 1)
< [Do(x(s))(=(t) — 2(s)) — Do(=(s))2(s)a(s, )] + | D%l [2lalt — 5
< | Dol [zlazalt — 12 + | D0l [2lalt — s

< |lollcz[z]a,2alt — s*.

So we get that
[[-Fi(z)]]ocﬁa < [lolle2[z] .20 [

Next, we define F : 9%(z) — 9%(z), as F = F° o F1, so we send

0.9) s (0. Do) > ( [ 09)- dlw.1.010)) .

0

Then set .
P = (1 + [ @0.6)- dw1.00).

0

We need to turn F’ into a contraction so that it has a fixed point. We achieve this
by choosing a sufficiently small interval [0, ), and finding a nice invariant subset of
G (z). As we will see, ty depends on ||o]|c3, so we can repeat the same construction
on [to, 2t0), e

How can this be done? First, switch from ¥“(x) to g?a(:r) = {(y,9) : y(0) =
y°,7(0) = o(y")}. This way, we don’t need to worry about the difference be-
tween a norm and a seminorm; this contraction takes place in a metric space,
which is good enough for our purposes. Observe that (a,a) € ¥(x), where a(t) =
Y0 +a(y°)(z(t) — z(0)) and a(t) = o(y"). Observe that

Now set & = {(y,y) € g?o‘(x) [y — a,y —@)]a,20 < 1}. The trick is to construct
something in a rougher space and then show that it is as regular as you want. We
will continue this next time.
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